
Java

The Forward Problem - Where Does the Arrow Go?
The Goal & The Challenge

The fundamental problem is that you want to hit a distant target with an arrow. You can't just aim
directly at it because of gravity. The arrow travels in a parabolic arc, meaning you have to aim
above your target to compensate for the drop. The critical question is, "How much above?"

To answer this, we need to predict the arrow's flight path. The AimBow mod does this by
creating a simulation. It builds a mathematical model of the arrow and calculates its position and
velocity at small time intervals, or "ticks," to trace its entire trajectory. This is a classic physics
problem of projectile motion.

Setting the Stage - The RayData Object

To simulate the arrow, you first need a way to describe its state at any given moment. The
essential properties are its position (its x, y, z coordinates) and its velocity (the direction and
speed it's traveling).

The mod accomplishes this with a "ghost" arrow, an abstract representation called RayData.
This object doesn't exist in the game world but follows all the same physical rules.

Let's look at the code that defines this state, starting with the TickingEntity.java class, which is
the base for RayData:

File: src/main/java/net/famzangl/minecraft/aimbow/aiming/TickingEntity.java

public class TickingEntity {
​ public double posX, posY, posZ;
​ public double motionX, motionY, motionZ;
 // ... other variables
}

Here, posX, posY, and posZ are the 3D coordinates. The key part is motionX, motionY, and
motionZ. This is the velocity vector. It's a set of three numbers that simultaneously defines:

1.​ The direction of travel in 3D space.
2.​ The speed of travel in that direction.

Java

By tracking these six variables, you have a complete snapshot of the arrow's state at any
instant.

The Launch - Turning Player Aim into Initial Velocity

Now that we have our abstract arrow, we need to give it an initial push. The arrow's starting
velocity is determined by two factors: the power from the bow charge and the direction the
player is aiming.

First, let's determine the power. This is calculated in the BowColissionSolver.

File: src/main/java/net/famzangl/minecraft/aimbow/aiming/Bow/BowColissionSolver.java

@Override
public RayData generateRayData() {
 int useDuration =
Minecraft.getMinecraft().thePlayer.getItemInUseDuration();
 // ...
 float drawTime = Math.min(useDuration, 20) / 20.0f;
 force = 2 * drawTime * drawTime * drawTime;
 // ...
 return new BowRayData(force);
}

Let's break this down:

●​ useDuration is the number of ticks the player has been holding the right mouse button.
●​ Math.min(useDuration, 20) caps this value at 20 ticks (1 second), which is the time for a

full draw in Minecraft.
●​ Dividing by 20.0f normalizes drawTime to a value between 0.0 (no charge) and 1.0 (full

charge).
●​ The crucial line is force = 2 * drawTime * drawTime * drawTime;. This is a cubic

relationship, not linear.
○​ At a half charge (drawTime = 0.5), the force isn't half; it's 2 * 0.5^3 = 0.25.
○​ At full charge (drawTime = 1), the force is 2 * 1^3 = 2.​

This cubic curve means the power ramps up slowly at first and then very rapidly
at the end, which mimics the feel of drawing a real bow. This force variable is the
scalar magnitude of our initial velocity—it's the "speed" component.

Java

Next, we need the direction. This is handled inside the BowRayData object itself.

File: src/main/java/net/famzangl/minecraft/aimbow/aiming/Bow/BowRayData.java

public void shoot() {
 // ...
 double motionX = -MathHelper.sin(this.rotationYaw / 180.0F *
(float) Math.PI)
 * MathHelper.cos(this.rotationPitch / 180.0F *
(float) Math.PI);
 double motionZ = MathHelper.cos(this.rotationYaw / 180.0F *
(float) Math.PI)
 * MathHelper.cos(this.rotationPitch / 180.0F *
(float) Math.PI);
 double motionY = (-MathHelper.sin(this.rotationPitch / 180.0F *
(float) Math.PI));
 this.setThrowableHeading(motionX, motionY, motionZ, force *
1.5F, 0);
}

This is pure trigonometry. It converts the player's viewing angles (rotationYaw and rotationPitch)
from spherical coordinates into a 3D Cartesian vector (motionX, motionY, motionZ). This vector
has a length of 1; it's a "unit vector" that represents only direction.

Finally, the call to setThrowableHeading combines the two. It takes the direction vector and
scales it by the force we calculated earlier (multiplied by a constant 1.5F for bows). Now our
ghost arrow has its complete initial velocity vector and is ready to be simulated.

Java

The Simulation - One Tick at a Time

Calculating the arrow's final landing spot with a single equation is extremely difficult because of
factors like air resistance. The mod uses a much more practical approach: it simulates the flight
tick by tick. This numerical method is a form of Euler integration.

The core of this simulation is in the moveTick method of the RayData class.

File: src/main/java/net/famzangl/minecraft/aimbow/aiming/RayData.java

@Override
public void moveTick() {
 super.moveTick();
 // ... rotation calculations ...
 float f3 = 0.99F; // Air resistance factor
 float f1 = getGravity();

 this.motionX *= f3;
 this.motionY *= f3;
 this.motionZ *= f3;
 this.motionY -= f1;
 this.setPosition(this.posX, this.posY, this.posZ);

 trajectory.add(new Vec3(this.posX, this.posY, this.posZ));
}

Three critical physics principles are applied here every tick:

1.​ Gravity: The line this.motionY -= f1; is where gravity is applied. For a bow, getGravity()
returns 0.05f. This means every tick, the arrow's vertical velocity is reduced by a
constant amount. This relentless downward acceleration is what creates the parabolic
arc.

2.​ Air Resistance (Drag): The lines this.motionX *= f3;, this.motionY *= f3;, and
this.motionZ *= f3; model drag. With f3 = 0.99F, the arrow loses 1% of its velocity in all
directions each tick. This is why the arrow eventually slows down and doesn't fly forever.

3.​ Position Update: The moveTick method in the parent TickingEntity class performs the
final step:​
this.posX += this.motionX;​
This is the Euler integration step. The new position is simply the old position plus the
velocity vector for that tick.

Java

By calling this moveTick method in a loop, the mod traces the arrow's entire path. Each
calculated position is added to the trajectory list, which is then rendered on the screen as the
visible line.

The Reverse Problem - How Do We Hit What We Aim At?
The New Challenge - Finding the Right Angle

Now we get to the really clever part: the auto-aim. The problem is now inverted. We know the
destination (the target entity), and we need to find the initial launch angle (pitch) that will get the
arrow there.

A direct analytical solution is extremely difficult. Instead of trying to solve one complex equation,
the mod uses an iterative algorithm. It makes an intelligent guess for the angle, simulates the
shot to see where it lands, and then uses that result to make a better guess, repeating until it
finds the perfect angle.

The "Smart Guesser" - The ReverseBowSolver

The class that performs this magic is the ReverseBowSolver. It uses a highly efficient algorithm
called the bisection method (a type of binary search).

Imagine you're guessing a number between 1 and 100. You guess 50. If you're told "too high,"
you've just eliminated half of all possibilities. Your next guess is 25. By repeatedly guessing the
midpoint and halving the search space, you find the answer very quickly. The mod does this, but
for angles.

File: src/main/java/net/famzangl/minecraft/aimbow/aiming/Bow/ReverseBowSolver.java

private float getYForTarget(float dHor, float dVert) {
 float maxVert = 0.9f, minVert = -0.9f;
 for (int attempts = 0; attempts < 50; attempts++) {
 float vert = (maxVert + minVert) / 2;
 // ...
 float newY = getYAtDistance(hor * velocity, vert * velocity,
dHor);
 if (Float.isNaN(newY)) {
 return 0;
 } else if (newY > dVert) {

 maxVert = vert;
 } else {
 minVert = vert;
 }
 }
 float res = (maxVert + minVert) / 2;
 return res;
}

Let's dissect this:

●​ float maxVert = 0.9f, minVert = -0.9f; defines the initial search space. We know the
vertical component of our launch direction must be between aiming mostly down and
mostly up.

●​ The for loop runs 50 times to ensure high precision.
●​ float vert = (maxVert + minVert) / 2; is the guess. It picks an angle exactly in the middle

of the current possible range.
●​ float newY = getYAtDistance(...) is the check. This method runs a mini-simulation using

the same physics from Act 1. It calculates the arrow's height (newY) when it reaches the
target's horizontal distance (dHor).

●​ The if/else block is where the search space is refined:
○​ If newY > dVert, the shot went too high. The guessed angle was too large.

Therefore, the new maximum possible angle (maxVert) becomes our guess. We
have just eliminated the entire top half of the search range.

○​ Otherwise, the shot was too low. The new minimum possible angle (minVert)
becomes our guess, eliminating the bottom half.

After 50 iterations of halving the search space, the difference between minVert and maxVert is
practically zero, and their average is the extremely precise vertical launch vector needed.

Java

Putting It All Together - The Final Aim

The ReverseBowSolver has given us the perfect 3D vector to aim in. The final step is to
translate this back into the yaw and pitch angles that the player's view uses.

File: src/main/java/net/famzangl/minecraft/aimbow/AimbowGui.java

private void adjustPlayerLook(Vec3 lookDir) {
 // ...
 float yaw = (float) Math.toDegrees(Math.atan2(dz, dx)) - 90f;
 float pitch = (float) -Math.toDegrees(Math.atan2(dy,
Math.sqrt(dx*dx + dz*dz)));
 // ...
 mc.thePlayer.setAngles(yawDiff/0.15f, -pitchDiff/0.15f);
}

This is the reverse of the trigonometry from the start. It uses the atan2 (arc-tangent) function to
convert the (dx, dy, dz) vector back into yaw and pitch angles. The mod then smoothly adjusts
the player's view to match this perfect aim.

By combining a step-by-step physics simulation with an elegant iterative search algorithm, the
AimBow mod provides a powerful and mathematically sound tool for archers.

	The Forward Problem - Where Does the Arrow Go?
	The Goal & The Challenge
	Setting the Stage - The RayData Object
	The Launch - Turning Player Aim into Initial Velocity
	The Simulation - One Tick at a Time

	The Reverse Problem - How Do We Hit What We Aim At?
	The New Challenge - Finding the Right Angle
	The "Smart Guesser" - The ReverseBowSolver
	Putting It All Together - The Final Aim

